Hyper-Fibonacci and Hyper-Lucas Polynomials

نویسندگان

چکیده

In this paper, hyper-Fibonacci and hyper-Lucas polynomials are defined some of their algebraic combinatorial properties such as the recurrence relations, summation formulas, generating functions presented. addition, relationships between given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bivariate Complex Fibonacci and Lucas Polynomials

In this study we define and study the Bivariate Complex Fibonacci and Bivariate Complex Lucas Polynomials. We give generating function, Binet formula, explicit formula and partial derivation of these polynomials. By defining these bivariate polynomials for special cases Fn(x, 1) is the complex Fibonacci polynomials and Fn(1, 1) is the complex Fibonacci numbers. Finally in the last section we gi...

متن کامل

On convolved generalized Fibonacci and Lucas polynomials

We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...

متن کامل

ON THE NORMS OF r–CIRCULANT MATRICES WITH THE HYPER–FIBONACCI AND LUCAS NUMBERS

In this paper, we study norms of circulant matrices F = Circ(F 0 , F (k) 1 , . . . ,F (k) n−1) , L = Circ(L 0 , L (k) 1 , . . . ,L (k) n−1) and r -circulant matrices Fr = Circr(F (k) 0 , F (k) 1 , . . . ,F (k) n−1) , Lr = Circr(L 0 , L (k) 1 , . . . ,L (k) n−1) , where F (k) n and L (k) n denote the hyper-Fibonacci and hyper-Lucas numbers, respectively. Mathematics subject classification (2010)...

متن کامل

Generalized Fibonacci and Lucas Polynomials and Their Associated Diagonal Polynomials

Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the same article, he also defined and studied the properties of the rising and descending polynomials i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, Fermat, and oth...

متن کامل

On some properties on bivariate Fibonacci and Lucas polynomials

In this paper we generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish journal of mathematics & computer science

سال: 2023

ISSN: ['2148-1830']

DOI: https://doi.org/10.47000/tjmcs.1123369